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Inertial Sensor Basic Data Processing 

1 Introduction – Inertial Sensor Basic Data Processing 

Cooke lenses with i and 3 Technology contain a set of inertial sensors, which provide information 

about the 3D orientation and motion of the lens. This system has been designed primarily to support 

VFX applications, particularly as an aid to feature-based 3D camera tracking workflows. 

This application demands high accuracy, and Cooke’s system has been designed with this in mind. Each 

lens is factory calibrated to minimise the impact of manufacturing variation in the inertial sensors, data 

processing avoids introducing artefacts into the stream, and timing data supports synchronisation 

between inertial and video data. This design provides the best possible inputs for camera tracking, but it 

also means that lens outputs are essentially in a raw state and some basic data processing must be done 

to convert the data into a usable form. 

This document provides a description of this basic data processing, starting with raw lens data, and 

ending up with time synchronized sensor streams in calibrated physical units. 

 

2 Definitions 

2.1 Measurement units 

Data is provided from three different sensors: a three axis accelerometer, a three axis gyro (angular rate 

sensor), and a three axis magnetometer. The raw data from the sensor analog to digital converters 

(ADC) is output from the lens, and the processing described below will transform this into physically 

meaningful measurements: 

• Accelerometer: The accelerometer measures both acceleration and gravity; in this document 

we refer to this combination as specific force, though it is also sometimes called proper 

acceleration. Units are m s-2. 

• Gyro: The gyro measures the angular rate of the system. Units are rad s-1. 

• Magnetometer: The magnetometer measures the local magnetic field. Units are T (tesla). 

All three sensors generate measurements defined in the body frame, as defined in the following section. 
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2.2 Coordinate frames 

2.2.1 Focal plane frame (FP) 

The focal plane frame is a right-handed coordinate frame, which has a well-defined physical relationship 

with the PL mount (the fundamental mechanical interface between the lens and the camera): 

• The origin of the focal plane (FP) frame is located at the centre of the camera focal plane. 

• The y axis points towards the top of the focal plane. 

• The z axis is antiparallel to the direction the camera is looking. 

• The x axis completes the right-handed set. 

2.2.2 Body frame (B) 

All three sensors generate measurements defined in the body frame (abbreviated as the B frame). This 

is a right-handed frame, with its origin at the physical location of the accelerometer in the lens. The 

origin and frame orientation relative to the PL mount are both lens-model dependent, but for all 

currently manufactured prime /i2 lenses, the definition is as follows: 

• The origin of the body (B) frame is at coordinate (0.003, -0.034, -0.08) of the FP frame (units 

meters). Physically, the is 8 cm in front of the focal plane and 3.4 cm below the optical axis. 

• The z axis is antiparallel to the FP frame z axis. 

• The y axis is a vector with direction (-0.260188, 0.965558, 0) in the FP frame. 

• The x axis completes the right-handed set. 

2.2.3 Camera frame (C) 

For fusion of video data with inertial data, the effective optical pinhole location for the camera must be 

defined. This corresponds to the entrance pupil position. Note that the distance between the focal plane 

and the entrance pupil varies depending on the focus setting and zoom setting of the lens, and that this 

distance can be determined using the entrance pupil position lens metadata. The definition of the frame 

is: 

• The origin of the camera (C) frame is the centre of the entrance pupil of the lens. 

• The axes orientation is identical to the focal plane (FP) frame. 

2.2.4 Summary 

As an aid to understanding, the relationship between all three coordinate frames is shown below.  
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3 Data import 

3.1 Main data stream 

The first step is to parse the binary Kdi responses. Each Kdi poll will generate a response which contains 

the following information: 

• A sequence number in the range 0-255 which ensures that each Kdi poll from the camera can be 

unambiguously matched with the response from the lens. 

• A high resolution timestamp of when the Kdi poll was received by the lens. This takes the form 

of a 16 bit unsigned integer, with a clock frequency of 150 kHz. 

• A single sample from the magnetometer, taken at the time the Kdi poll was received. 

• A set of 0 or more bursts of sensor data, where each burst contains eight samples. Each burst 

contains: 

o The sensor type (either accelerometer or gyro), 

o A high resolution timestamp for the final sample in the burst, 

o The raw ADC data for the eight samples. 

The accelerometer and gyro both output data at roughly 238 Hz. The actual data rate can vary quite 

significantly from this nominal value, so it is important to use high-resolution timestamps for any 

analysis which requires high timing accuracy. 

The magnetometer is sampled at a much lower frequency (equal to the video frame rate). 

Accelerometer and gyro data must be integrated to recover useful orientation and position information, 

and high sample frequency is essential to control numerical errors in this process. In contrast, the 
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magnetometer provides direct information about orientation, and hence a low output frequency is 

sufficient. 

3.2 Inertial calibration coefficients 

The inertial calibration is different on each lens, as it is generated by a calibration procedure during lens 

manufacture. This can be retrieved from the lens using the K61 command. This command returns 45 

single precision floating point numbers in little endian form. These coefficients are divided into three 

sections: 

• The first 12 numbers (48 bytes) form the accelerometer calibration matrix. This is a 3x4 matrix 

(i.e. three rows, four columns) in column major format (i.e. the first three numbers form the first 

column, the next three numbers form the second column, and so on). 

• The next 21 numbers form the gyro calibration matrix, which is a 3x7 matrix in column major 

format. 

• The last 12 numbers form the magnetometer calibration matrix, which is a 3x4 matrix in column 

major format. 

The reason that the gyro calibration has a larger matrix than the accelerometer or magnetometer is that 

the gyro calibration includes a correction for sensor non-linearity.  
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4 Conversion to physical units 

Up to this point, all sensor data is in its raw state, i.e. a stream of integers as measured by the ADC. This 

needs to be converted into calibrated physical units. 

Accelerometer data is converted using a matrix multiplication: 

(

𝑎𝑥
𝑎𝑦
𝑎𝑧
) = 𝐌acc(

𝑎𝑅𝑎𝑤𝑥
𝑎𝑅𝑎𝑤𝑦
𝑎𝑅𝑎𝑤𝑧
1

) 

where aRaw are raw accelerometer ADC values, a are calibrated specific force measurements in the 

body (B) coordinate frame, and Macc is the 3x4 accelerometer calibration matrix. 

Gyro data is converted by: 

 

(

𝜔𝑥
𝜔𝑦
𝜔𝑧
) = 𝐌𝑔𝑦𝑟𝑜

(

 
 
 
 
 

𝑔𝑅𝑎𝑤𝑥
𝑔𝑅𝑎𝑤𝑦
𝑔𝑅𝑎𝑤𝑧
𝑔𝑅𝑎𝑤𝑥

2

𝑔𝑅𝑎𝑤𝑦
2

𝑔𝑅𝑎𝑤𝑧
2

1 )

 
 
 
 
 

 

 

where gRaw  are the raw gyro ADC values, 𝜔 are calibrated angular rate measurements in the body (B) 

coordinate frame, and Mgyro is the 3x7 gyro calibration matrix. 

Magnetometer data is converted by: 

 

(

𝑏𝑥
𝑏𝑦
𝑏𝑧

) = 𝐌mag(

𝑏𝑅𝑎𝑤𝑥
𝑏𝑅𝑎𝑤𝑦
𝑏𝑅𝑎𝑤𝑧
1

) 

 

where bRaw are raw magnetometer ADC values, b are calibrated magnetic field measurements in the 

body (B) coordinate frame, and Mmag is the 3x4 magnetometer calibration matrix.  
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5 Timing data 

The raw timing data for the sensor data is in the form of unsigned 16 bit integers from the high 

resolution clock, running at 150 kHz. These timestamps are extremely accurate, but there are two 

immediate problems: 

• This clock will rollover roughly every 0.44 seconds, and so doesn’t provide an absolute 

timestamp. 

• For the accelerometer and gyro data, only the last sample in each burst has a timestamp. 

Some further data processing is therefore needed to obtain usable timestamps for each sample of 

sensor data. 

5.1 Unwrapping Kdi timestamps 

Kdi polls should generally be sent once per frame of video data. It is therefore straightforward to directly 

detect when the clock rolls over in the sequence of Kdi timestamps (because the timestamp will 

decrease between two consecutive polls), and hence unwrap the timestamps into a continuously 

increasing sequence. 

5.2 Unwrapping burst timestamps 

The process for unwrapping burst timestamps is very similar to that used for unwrapping Kdi 

timestamps. However, it is important to make sure that the two different types of timestamp are 

unwrapped consistently (i.e. that there isn’t a full cycle slip between the two streams). This can be done 

by checking that the most recent burst for each poll has an age of between 0 and 0.033 seconds. 

5.3 Accelerometer and gyro sample timestamps 

The burst timestamps specifically refer to the time of the last sample in each burst; the preceding seven 

samples do not have timestamps in the raw data. These timestamps can be inferred with a high degree 

of accuracy by using linear interpolation. For the very first burst, timestamps can be inferred via 

extrapolation, or data from the first burst can be discarded. 

6 Example test sequence 

For test purposes, it is useful to move the lens through a short sequence of orientations, and confirm 

that the logged inertial data show the expected signals. As an example, below is some data from the 

following sequence: 

• Start with the FP frame x axis pointing up. 

• Rotate the lens by -90 degrees around the FP frame z axis. This will leave the lens with the 
FP frame y axis pointing up (the normal orientation of the lens when mounted on a camera). 

• Rotate the lens by -90 degrees around the FP frame x axis. This will leave the lens with the 
FP frame z axis pointing up. 
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• Rotate the lens by -90 degrees around the FP frame y axis. This will leave the lens with the 
FP frame x axis pointing up. 

The resulting accelerometer and gyro signals are shown below: 
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Shading Model Design 

7 Introduction – Shading Model Design 

This document outlines the mathematical model used to represent vignetting in Cooke lenses. 
Many candidate models were considered before selection of the present model; this model was 
chosen on the basis that it satisfies the following design criteria: 

• Good fit for all lenses, with a worst-case error smaller than 5%. 

• Smooth interpolation in between the fitted data points, in both position and iris setting. 

• As simple as possible, subject to the above constraints. 

8 Model 

Vignetting is modelled as a function of the iris setting and position on the detector. The iris 
setting 𝑎 is defined as the inverse of the T-stop; this value is proportional to the radius of the 
physical aperture (the actual constant of proportionality being absorbed by the model 
parameters). The position parameter 𝑥 is a distance from the image centre, normalised using 
the nominal image circle for the lens 𝑟0 (e.g. a point 3 mm from the centre of the sensor would 
correspond to 𝑥 = 0.2 for a lens with an image circle radius of 15 mm). For anamorphic lenses 
𝑥 is specifically a horizontal offset, and a second position parameter 𝑦 defines vertical offset; 
this case both 𝑥 and 𝑦 are normalised by the nominal image half-width (𝑤0/2). 

8.1 Natural vignetting 

Natural vignetting is a continuous variation in the image intensity as a function of position, 
which occurs even when the lens is stopped down. It is symmetric about 𝑥 = 0, and can be well 
modelled using a polynomial with only even powers. 

𝑣𝑛(𝑥) = 1 − (𝛼1𝑥
2 + 𝛼2𝑥

4 + 𝛼3𝑥
6), (1) 

where 𝑣𝑛(𝑥) is the light intensity relative to the intensity at 𝑥 = 0, and 𝛼1, 𝛼2 and 𝛼3 are model 
coefficients. 
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8.2 Optical vignetting 

 

Figure 1: Optical vignetting on an example lens, with the iris set to 𝑓/1.4 (top row) and 𝑓/2 
(bottom row). When viewed straight on (left column), the light collection area is defined purely 
by the lens’s iris. From an angle, the light collection area is defined by the extent of the front and 
rear elements (at 𝑓/1.4, top right), or by the front element, rear element, and iris (at 𝑓/2, 
bottom right).  

Optical vignetting occurs when the edges of optical elements occlude part of the lens’s aperture. 
The effect only occurs at certain combination of iris setting and position on the sensor, so the optical 
vignetting function is a piecewise function of 𝑎 and 𝑥. 

As Figure 1 shows, the occlusion usually comes from more than one element in the lens. In this 
example, both the front and the rear elements contribute to the effect. For a given 𝑎, the onset of 
vignetting from different elements may occur at different 𝑥 values, which means that the vignetting 
function can be composed of several different pieces. The value of the vignetting function is continuous 
in both 𝑥 and 𝑎, but there is no guarantee that the function derivative will be continuous in either 
parameter. 

The piecewise nature of the function means that simple polynomial models cannot provide 
acceptable accuracy for most of the test lenses. An explicitly piecewise polynomial or rational function 
would likely be usable, but such a model would be complicated to specify and evaluate. 

The model selected is therefore based on a simple geometric model, which represents the iris, front 
and rear optical elements as circles. At 𝑥 = 0, all three circles are concentric, and the full area of the 
aperture circle is available. As 𝑥 increases, the circles representing the front and rear optical elements 
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shift horizontally (in opposite directions), and will at some point start to occlude the aperture circle. The 
optical vignetting effect is then taken as fraction of the iris circle which is unobscured. 

In detail, the optical vignetting function is defined as follows. Start by defining the intersection area 
of three overlapping circles with radii 𝑟1, 𝑟2 and 𝑟3 and with centre distances 𝑑12 and 𝑑23 as 

𝐵(𝑟1, 𝑟2, 𝑟3, 𝑑12, 𝑑23) (see Section 3 for the full definition). Then, the optical vignetting function 𝑣𝑜(𝑥, 𝑎) 
is defined as 

𝑣𝑜(𝑥, 𝑎) =
𝐵(𝑎𝑓(𝑥), 𝑎, 𝑎𝑟(𝑥), 𝛽1𝑥, 𝛽2𝑥)

𝜋𝑎2
, 

(2) 

where 𝑎𝑓(𝑥) and 𝑎𝑟(𝑥) are the radii of the front and rear elements respectively, and 𝛽1 and 𝛽2 

are model coefficients. 

In practice, using fixed constants for 𝑎𝑓 and 𝑎𝑟 does not provide a sufficiently accurate fit to the true 

optical vignetting on all lenses, so these values are taken to be an even function of 𝑥: 
𝑎𝑓(𝑥) = 𝜇1 + 𝜇2𝑥

2 + 𝜇3𝑥
4,

𝑎𝑟(𝑥) = 𝜈1 + 𝜈2𝑥
2 + 𝜈3𝑥

4,
 

(3) 
(4) 

where 𝜇1, 𝜇2, 𝜇3 and 𝜈1, 𝜈2, 𝜈3 are model coefficients. 

To get the final value for the vignette function 𝑣(𝑥, 𝑎), the natural and optical vignetting effects are 
simply multiplied: 

𝑣(𝑥, 𝑎) = 𝑣𝑛(𝑥)𝑣𝑜(𝑥, 𝑎). (5) 

In total, a spherical lens vignetting model has 11 free parameters: three for the natural 
vignette, and eight for optical vignette. 

8.3 Anamorphic lenses 

Anamorphic lenses can also be accommodated by the model outlined above with some minor 
modifications. Start by defining the radial distance to the image centre: 𝑟: 

𝑟 = √𝑥2 + 𝑦2. (6) 

The natural vignette can be well modelled using the existing function, in terms of 𝑟 instead of 𝑥: 

𝑣𝑛(𝑟) = 1 − (𝛼1𝑟
2 + 𝛼2𝑟

4 + 𝛼3𝑟
6). (7) 

On some of the anamorphic lenses, the optical vignette can be handled in a similar way. 
However, to give good accuracy on all lenses, modified versions Equations 3 and 4 are needed: 

𝑎𝑓′(𝑥, 𝑦) = 𝜇1 + 𝜇2𝑥
2 + 𝜇3𝑦

2 + 𝜇4𝑥
4 + 𝜇5𝑥

2𝑦2 + 𝜇6𝑦
4,

𝑎𝑟′(𝑥, 𝑦) = 𝜈1 + 𝜈2𝑥
2 + 𝜈3𝑦

2 + 𝜈4𝑥
4 + 𝜈5𝑥

2𝑦2 + 𝜈6𝑦
4,

 
(8) 

(9) 

The optical vignetting function can then be reused, with 𝑎𝑓′(𝑥, 𝑦) and 𝑎𝑟′(𝑥, 𝑦) replacing 𝑎𝑓(𝑥) 

and 𝑎𝑟(𝑥): 

𝑣𝑜(𝑥, 𝑦, 𝑟, 𝑎) =
𝐵(𝑎𝑓′(𝑥, 𝑦), 𝑎, 𝑎𝑟′(𝑥, 𝑦), 𝛽1𝑟, 𝛽2𝑟)

𝜋𝑎2
. 

(10) 
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The two additional six parameters bring the total number of free parameters for anamorphic 
lenses to 17. 

9 Circle intersection area calculation 

The optical vignetting model needs an accurate method for calculating the intersection area of 
three circles. This section outlines an algorithm for this, starting with an expression for the area 
of two overlapping circles, and then extending this result to cover the full three-circle problem. 

9.1 Two-circle intersection area 

Define two circles with radii 𝑅 and 𝑟, and with the circle centres separated by a distance 𝑑. 

 

The overlap area 𝐴(𝑅, 𝑟, 𝑑) can be calculated in closed form (see [1] for a derivation): 
1. First, check if the area is zero: 

𝐴 = 0 if 𝑟 + 𝑅 < 𝑑 (11) 
If not, then continue with the algorithm. 

2. Then, check if one of the circles is nested inside the other circle: 

𝐴 = {𝜋𝑟
2 if 𝑟 < 𝑅 − 𝑑

𝜋𝑅2 if 𝑅 < 𝑟 − 𝑑
 (12) 

If none of these criteria are true, then continue with the algorithm. 

3. Finally, the intersecting case has the following solution: 

𝐴 = 𝑟2cos−1 (
𝑑2 + 𝑟2 − 𝑅2

2𝑑𝑟
) + 𝑅2cos−1 (

𝑑2 + 𝑅2 − 𝑟2

2𝑑𝑅
) −

1 2⁄ √(−𝑑 + 𝑟 + 𝑅)(𝑑 + 𝑟 − 𝑅)(𝑑 − 𝑟 + 𝑅)(𝑑 + 𝑟 + 𝑅).

 

(13) 



 

Copyright 2021 – Version 5.0 – Confidential Page 16 

 

 

9.2 Three-circle intersection area 

Define three circles with collinear centres, circle radii 𝑟1, 𝑟2, 𝑟3, and distance between centres 
𝑑12, 𝑑23 and 𝑑13 = 𝑑12 + 𝑑23. 

 
Calculating the intersection area 𝐵 is more complicated than for the two-circle case, because there 

are a number of different topologies which must be considered. The following algorithm describes how 
the area can be found in the general case. 
1. First, check if the area is zero: 

𝐵 = {

0 if 𝑟1 + 𝑟2 < 𝑑12
0 if 𝑟2 + 𝑟3 < 𝑑23
0 if 𝑟1 + 𝑟3 < 𝑑13.

 
(14) 

If none of these criteria are true, then continue with the algorithm. 

2. Then, check if one of the circles is nested inside both of the other circles: 

𝐵 = {

𝜋𝑟1
2 if 𝑟1 ≤ 𝑟2 − 𝑑12 and 𝑟1 ≤ 𝑟3 − 𝑑13

𝜋𝑟2
2 if 𝑟2 ≤ 𝑟1 − 𝑑12 and 𝑟2 ≤ 𝑟3 − 𝑑23

𝜋𝑟3
2 if 𝑟3 ≤ 𝑟1 − 𝑑13 and 𝑟3 ≤ 𝑟2 − 𝑑23.

 

(15) 

If none of these criteria are true, then continue with the algorithm. 

3. Next, check if one of the circles completely covers another circle. In that case, the problem reduces 

to that of two overlapping circles, and Section 3.1 gives the result: 

𝐵 = {

𝐴(𝑟2, 𝑟3, 𝑑23) if 𝑟2 ≤ 𝑟1 − 𝑑12 or 𝑟3 ≤ 𝑟1 − 𝑑13
𝐴(𝑟1, 𝑟3, 𝑑13) if 𝑟1 ≤ 𝑟2 − 𝑑12 or 𝑟3 ≤ 𝑟2 − 𝑑23
𝐴(𝑟1, 𝑟2, 𝑑12) if 𝑟1 ≤ 𝑟3 − 𝑑13 or 𝑟2 ≤ 𝑟3 − 𝑑23

 

(16) 

If none of these criteria are true, then continue with the algorithm. 

4. Finally check for the case where the middle circle is large enough that it does not constrain the 
intersection area. Calculate the distance 𝑑2,13 from the centre of the middle circle 𝑝2 to the 

intersection point between the left and right cirlces 𝑝13: 
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𝑑2,13 = √
𝑑12(𝑟3

2 − 𝑑23
2 ) + 𝑑23(𝑟1

2 − 𝑑12
2 )

𝑑12 + 𝑑23
. 

(17) 

Then, the area can be determined: 

𝐵 = {
𝐴(𝑟1, 𝑟3, 𝑑13)  if 𝑑2,13 ≤ 𝑟2
𝐴(𝑟1, 𝑟2, 𝑑12) + 𝐴(𝑟2, 𝑟3, 𝑑23) − 𝜋𝑟2

2  if 𝑑2,13 > 𝑟2
 

(18) 

10 Data storage format 

The model parameters can be downloaded from a lens using the KKi command.  

For spherical lenses, coefficients will be returned in the following order: 

Index Coefficient Suggested variable name Units 

1 𝛼1 alpha_1  

2 𝛼2 alpha_2  

3 𝛼3 alpha_3  

4 𝛽1 beta_1  

5 𝛽2 beta_2  

6 𝜇1 mu_1  

7 𝜇2 mu_2  

8 𝜇3 mu_3  

9 𝜈1 nu_1  

10 𝜈2 nu_2  

11 𝜈3 nu_3  

12 𝑟0 nominal_image_radius mm 

 
 
For anamorphic lenses, the coefficients are: 

Index Coefficient Suggested variable name Units 

1 𝛼1 alpha_1  

2 𝛼2 alpha_2  
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3 𝛼3 alpha_3  

4 𝛽1 beta_1  

5 𝛽2 beta_2  

6 𝜇1 mu_1  

7 𝜇2 mu_2  

8 𝜇3 mu_3  

9 𝜇4 mu_4  

10 𝜇5 mu_5  

11 𝜇6 mu_6  

12 𝜈1 nu_1  

13 𝜈2 nu_2  

14 𝜈3 nu_3  

15 𝜈4 nu_4  

16 𝜈5 nu_5  

17 𝜈6 nu_6  

18 𝑤0 nominal_image_width mm 

19 ℎ0 nominal_image_height mm 

11 References 

[1] Weisstein, Eric W., “Circle-Circle Intersection.” From MathWorld–A Wolfram Web Resource. 
http://mathworld.wolfram.com/Circle-CircleIntersection.html 
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Spherical Lens Distortion Model 

12.  Introduction – Spherical Lens Distortion Model  

This section defines the mathematical model for lens optical properties, including distortion. 

The model is intended to support VFX applications (particularly matchmoving), where very high 

accuracy is required.  This aim leads to the following choices: 

• Each manufactured lens is measured individually as part of the build process, so model 

coefficients are as accurate as possible 

• The mathematical model accounts for decentering distortion as well as radial distortion 

• Model parameters are estimated as a function of the lens focus setting, so an accurate 

lens model can be reconstructed for each frame of the video 

13 Coordinate Frames and Units 

 

The camera frame C is a 3D orthogonal frame: 

• The origin is located at the entrance pupil of the lens. 

• The y axis points down, and is aligned with the columns of sensor pixels. 

• The z axis points in the direction the lens is looking. 

• The x axis completes the right-handed set. 

• Unit is meters 

 

The pixel frame P is a 2D coordinate system: 

• The origin is located at the center of the top-left pixel in the image. 

• The x axis points right. 

• The y axis points down. 
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• Unit is pixels. 

 

We also define 2D diagonally normalized coordinates D, which are used for distortion 

calculations: 

• The origin is located at the lens center. 

• The x and y axes align with the pixel frame axes. 

• Unites are such that the diameter of the lens’ nominal image circle is 2. 

14 Pinhole Camera Model 

 

The basic pinhole camera model is defined by the following parameters: 

• Principle distance 𝑓. 

• Lens center(𝑐𝑥, 𝑐𝑦), as an offset from the PL mount center.  Positive 𝑐𝑥 indicates lens 

center is shifted to the right; positive 𝑐𝑦 indicates lens center is shifted down.  

 

These are both specified in physical units (mm). 

15 Distortion Model 

 

For spherical lenses, the Brown-Conradi model is used. For any measured point in the image, 

the model specifies a correction which will convert the distorted point into an undistorted 

point.  Working in diagonally normalized coordinates, the corrected coordinates are calculated 

as follows: 

 

 

𝑥′ = 𝑥(1 + 𝐾1𝑟
2 + 𝐾2𝑟

4 + 𝐾3𝑟
6) + 𝑃1(𝑟

2 + 2𝑥2) + 2𝑃2𝑥𝑦 

𝑦′ = 𝑥(1 + 𝐾1𝑟
2 + 𝐾2𝑟

4 + 𝐾3𝑟
6) + 2𝑃1𝑥𝑦 + 𝑃2(𝑟

2 + 2𝑦2) 
 

where: 
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• 𝑥 and 𝑦 specify the measured (i.e. distorted) point, in diagonally normalized 

coordinates. 

• 𝑥′ and 𝑦′ specify the corrected (i.e. undistorted) point, in diagonally normalized 

coordinates. 

• 𝑟 is the distance from the image center, 𝑟2 = 𝑥2 + 𝑦2. 

• 𝐾1, 𝐾2and 𝐾3 are the radial distortion coefficients. 

• 𝑃1 and 𝑃2 are the decentering distortion coefficients. 

16 Entrance pupil off-axis shift  

 

The basic model described so far assumes that all rays that enter the camera pass through a 

single point in 3D space, i.e. the pinhole. However, real lenses deviate from this model which 

can have a significant effect on reconstruction accuracy. The effect is typically important on 

wide-angle lenses when imaging objects which are relatively close to the camera (roughly 1 

meter or less). A more detailed discussion can be seen in reference [1].  

 

Entrance pupil off-axis shift is modelled as a translation of the ray origin along the optical axis, 

relative to the nominal pinhole location. For small ray angles the shift is defined to be zero, so 

the paraxial entrance pupil is coincident with the origin of the camera frame (C). As the ray 

angle increases, the ray origin will shift along the z axis of the camera frame. The shift can be 

positive or negative, depending on the lens design. The shift is calculated as follows:  

 

z = S1r2+ S2r4 

where:  

 

• r is the distance from the image centre (r2= x2 + y2) of a measured point, in 
 diagonally normalised coordinates (exactly as used in the distortion calculation).  

 
• S1 and S2 are the entrance pupil off-axis shift coefficients.  
 
• z is the position of the entrance pupil, specified in mm.  
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17 Model as a Function of Focus Setting 

 

Each of the optical parameters (f, cx, cy , K1, K2, K3 , P1, P2 ) is modelled as function of the 

focus setting. First define the normalized focus setting as:                                  

𝑑𝑛 = 
𝑠𝑚𝑖𝑛
𝑠

 

where: 

• dn is the normalized focus setting. 

• smin is the minimum focus setting for the lens (in mm). 

• s is the current focus setting for the lens (in mm). 

 

dn will fall in the range (0,1) with 0 indicating infinity focus.  Lens optical parameters are then 

defined as a 3rd order polynomial function of dn.  For example, the principle distance f would be 

evaluated as follows: 

𝑓 =  𝑓0 + 𝑓1𝑑𝑛 + 𝑓2𝑑𝑛
2 + 𝑓3𝑑𝑛

3  

18   Lens Data 

 

The complete set of data forming the optical lens model is stored as 42 single precision floating 

point numbers.  

 

Line Values Description Units 

1 𝑠𝑚𝑖𝑛 Minimum focus setting mm 

2 𝑎𝑛𝑜𝑚 Nominal image circle diameter mm 

3 𝑓0, 𝑓1, 𝑓2, 𝑓3 Principle distance mm 

4 𝑐𝑥0 , 𝑐𝑥1 , 𝑐𝑥2 , 𝑐𝑥3 Principle point x offset mm 

5 𝑐𝑦0 , 𝑐𝑦1 , 𝑐𝑦, 𝑐𝑦3 Principle point y offset mm 
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6 𝐾10 , 𝐾11 , 𝐾12 , 𝐾13 Radial distortion 𝐾1  

7 𝐾20 , 𝐾21 , 𝐾22 , 𝐾23  Radial distortion 𝐾2  

8 𝐾30 , 𝐾31 , 𝐾32 , 𝐾33  Radial distortion 3  

9 𝑃10 , 𝑃11 , 𝑃12 , 𝑃13  Decentering distortion 𝑃1  

10 𝑃20 , 𝑃21 , 𝑃22 , 𝑃23  Decentering distortion 𝑃2  

11 𝑆10 , 𝑆11 , 𝑆12 , 𝑆13  Entrance pupil off-axis shift S1 mm 

12 𝑆20 , 𝑆21 , 𝑆22 , 𝑆23 Entrance pupil off-axis shift S2 mm 

 

References  

[1] Gennery, D.B., ”Generalized Camera Calibration Including Fish-Eye Lenses”, Int J Comput 

Vision (2006) 68: 239.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Copyright 2016 - Preliminary Copy – Version 4.0 Page 0 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
©2021 Cooke Optics Limited. All rights reserved. 

Cooke, I, S4, S4I, 5I, Anamorphic I, Anamorphic I Full Frame Plus, PANCHROI Classic, S7I, miniS4I, CXX 
and Panchro are trademarks of Cooke Optics Limited. 

The use of any of Cooke Optics’ intellectual property is strictly forbidden without its prior written consent. 

 
 
Cooke Close, Thurmaston 
Leicester, LE4 8PT, United Kingdom 
 
T +44 (0) 116 264 0700 
F +44 (0) 116 264 0707 
E lenses@cookeoptics.com 
W cookeoptics.com 
 

mailto:lenses@cookeoptics.com

